Page 1 of 9 REV 0

WER-GAT

POWER-GATE[™] Solid-State Devices Dual Rectifier, 400A, 500A, 600A Specification Sheet Generation 4.x

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

All devices ("x" = don't care), all amperages DC, all voltages DC and referenced to device ground, unless otherwise specified.

Symbol	Parameter	Min.	Max.	Units	
M	Anode Voltage, Model DRxxxA	-0.3 ⁽²⁾	21 ⁽³⁾	M	
V _A	Anode Voltage, Model DRxxxB	-0.3 ⁽²⁾	39 ⁽⁴⁾	v	
M	Cathode Voltage (anode voltage at min), Model DRxxxA	-0.6 ⁽²⁾	21 ⁽³⁾	N	
V _K	Cathode Voltage (anode voltage at min), Model DRxxxB	-0.6 ⁽²⁾	39 ⁽⁴⁾	V	
	Reverse Voltage (ground floating), Model DRxxxA	<u> </u>	21	M	
V _{R,gndfloat}	Reverse Voltage (ground floating), Model DRxxxB	· /-/	39	v	
	Forward Current (per rectifier, ground floating), DR400x	-	40	/	
(5) I _{F,gndfloat}	Forward Current (per rectifier, ground floating), DR500x	-	50	А	
	Forward Current (per rectifier, ground floating), DR600x	-	60		
T _A	Ambient Temperature	-45	+110	°C	
V _{IGN}	Ignition Alternator Excitation Trigger Voltage -39 ⁽⁶⁾		39 ⁽⁴⁾	M	
V _{STARTER}	Starter Alternator Excitation Trigger Voltage	-39 ⁽⁶⁾	39 ⁽⁴⁾	V	
I _{LED,MAX}	External LED Maximum Current	- F	30	mA	
V _{LED(OFF),MAX}	External LED Maximum Voltage (LED Off)	-50	50	V	

RECOMMENDED OPERATING CONDITIONS

All devices ("x" = don't care), all voltages DC and referenced to device ground, unless otherwise specificied.

Symbol	Parameter	Min.	Max.	Units
M	Anode Voltage, Model DRxxxA	5.6	18	M
VA	Anode Voltage, Model DRxxxB	5.6	36	V
V	Cathode Voltage (anode voltage at min), Model DRxxxA	5.5	18	V
VK	Cathode Voltage (anode voltage at min), Model DRxxxB	5.5	36	
T _A	Ambient Temperature	-40	+105	°C
VIGN	Ignition Alternator Excitation Trigger Voltage		36	V
V _{STARTER}	Starter Alternator Excitation Trigger Voltage	0	36	V

ELECTRICAL SPECIFICATIONS

All devices ("x" = don't care), all amperages DC, all voltages DC and referenced to ground, $T_A = +25 \pm 3 \circ$ C, 5.6 V $\leq V_A$ (DRxxxA) $\leq 18 \circ$ V, 5.6 V $\leq V_A$ (DRxxxB) $\leq 36 \circ$ V, all LEDs enabled, unless otherwise specified.

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions	Test Setup Figure
		-	-	400		Model DR400x, -40 $^{\circ}C \leq T_A \leq +105 ^{\circ}C$	
I _{F,MAX}	Maximum Forward Continuous Current (per rectifier)	-	-	500		Model DR500x, -40 °C \leq T _A \leq +105 °C	-
		-	-	600	А	Model DR600x, -40 °C \leq T _A \leq +105 °C	
ISURGE MAX	Maximum Forward Surge Current (per rectifier)	-	-	5 x I F MAY		Pulse width = 2 s, -40 °C $\leq T_{A} \leq$ +105 °C	_
IR TURN OFF MAX	Maximum Reverse Turn-Off Current (per rectifier)	-	_	3 X Is MAY		-40 °C < T ₄ < +105 °C	
-R, TORN-OFF, MAX				1.5		Model DR/00A Reverse Turp-Off Current = I_{a} run essent T_{a} = ±105 °C	
			-	1.5		Wooder Diveloors, reverse Futh-Off Current = 1, TURN-OFF, MAX, TA = + 105 C	
		-	-	2.5		Widdel DRS00A, Reverse Turn-Off Current = $I_{R,TURN-OFF,MAX}$, $I_A = \pm 105$ C	
LLOOP.MAX	Maximum Loop Inductance ⁽⁷⁾	-	-	2.2	μН	Model DR600A, Reverse Turn-Off Current = I _{R,TURN-OFF,MAX} , I _A = +105 °C	-
		-	-	2.6		Model DR400B, Reverse Turn-Off Current = I _{R,TURN-OFF,MAX} , T _A = +105 °C	
		-	-	2.1		Model DR500B, Reverse Turn-Off Current = I _{R,TURN-OFF,MAX} , T _A = +105 °C	
		-	-	1.5		Model DR600B, Reverse Turn-Off Current = I _{R,TURN-OFF,MAX} , T _A = +105 °C	
		-	39	-		DR400A, Forward Current = I _{F,MAX}	
		-	51	56	1	DR400A, Forward Current = I _{E.MAX} , T _A = +105 °C	
		-	44	-		DR500A, Forward Current = I	
		-	57	63		DR500A. Forward Current = Is May. Ta = +105 °C.	
			57	05		DE600A Forward Current - Issue	
		-	51	- 70			
VF	Forward Voltage Drop ⁽⁸⁾	-	66	/3	mV	DR600A, Forward Current = I _{F,MAX} , I _A = +105 °C	-
	o	-	44	-		DR400B, Forward Current = I _{F,MAX}	
		-	62	68		DR400B, Forward Current = I _{F,MAX} , T _A = +105 °C	
		-	52	-		DR500B, Forward Current = I _{F,MAX}	
		-	74	81		DR500B, Forward Current = I _{F,MAX} , T _A = +105 °C	
		-	59	-		DR600B, Forward Current = I _{F,MAX}	
		-	83	91	1	DR600B, Forward Current = I _{E.MAX} , T _A = +105 °C	
		-	1.7	-	1	$V_{K \text{ main}} = V_{K \text{ aux}} = 5.5 \text{ V}$, Anode floating, $V_{IGN} = V_{CTAPTEP} = 0 \text{ V}$. Combine not active	
			2.0	<u> </u>	1	$V_{k,max} = V_{k,max} = 12.0 V$. Anode floating, $V_{ickl} = V_{cranzer} = 0.V$. Combine not active	
		<u> </u>	2.0	-		$\cdot_{A,main}$ $\cdot_{A,main}$ $\cdot_{A,main}$ $-12.0 V$ Anode floating, $V_{IGN} = V_{STARTER} = 0 V$, combine not active	7
		<u> </u>	2.4			$v_{K,main} = v_{K,aux} = 10.0 v$, Annue nudring, $v_{IGN} = v_{STARTER} = 0 v$, Combine not active	/
		<u> </u>	2.6	-		IVIOUEI DIXXXO, V _{K,main} = V _{K,aux} = 24.0 V, Ariode Tioating, V _{IGN} = V _{STARTER} = U V, Combine not active	
		-	3.2	-		Model DRxxxB, V _{K,main} = V _{K,aux} = 36.0 V, Anode floating, V _{IGN} = V _{STARTER} = 0 V, Combine not active	
l.	Operating Current ⁽⁹⁾	-	48.4	-	mΑ	V _A = 5.5 V, Cathodes floating, V _{IGN} = V _{STARTER} = 0 V, Combine not active	
'S		-	49.0	-	ing	V _A = 12.0 V, Cathodes floating, V _{IGN} = V _{STARTER} = 0 V, Combine not active	
		-	50.8	-		V _A = 18.0 V, Cathodes floating, V _{IGN} = V _{STARTER} = 0 V, Combine not active	8
		-	52.6	-	1	Model DRxxxB, V _A = 24.0 V, Cathodes floating, V _{IGN} = V _{STARTER} = 0 V, Combine not active	
		-	56.1	-		Model DRxxxB, $V_{A} = 36.0 V$, Cathodes floating, $V_{IGN} = V_{STARTER} = 0 V$, Combine not active	
			75.5		1	V _{vv} = 12.0.V. Anode and other cathode floating. Combine active (COMBINE+ and COMBINE- shorted)	
			79.0			Model DRyvyR $V_{\rm c} = 24.0 V_{\rm c}$ Apade and other cathode floating Combine active (COMPINE) and COMPINE, chorted)	9
		-	78.9	-		woder DXXXB, $v_{K,x} = 24.0$ V, Anode and other cathode noating, combine active (combine+ and combine- shorted)	
		-	9	-		DR400A, V _{K,x} = 5.5 V, V _A = 0 V	
		-	21	-		DR400A, V _{K,x} = 12.0 V, V _A = 0 V	
		-	63	-		DR400A, V _{K,X} = 18.0 V, V _A = 0 V	
		-	7	-		DR500A, V _{K,x} = 5.5 V, V _A = 0 V	
		-	7	-		DR500A, V _{KX} = 12.0 V, V _A = 0 V	
		-	9	-		DR500A. $V_{K_{v}} = 18.0 \text{ V}$. $V_{a} = 0 \text{ V}$	
		-	15	-		$DR600A, V_{w_{a}} = 5.5 V, V_{a} = 0 V$	
			109			DF600A V = 12 0 V V = 0 V	
I _R	Reverse Leakage Current (per rectifier)	-	108	-	μΑ	$DR_{000A} = 12.0 \text{ V}_{A} = 0 \text{ V}_{A}$	10
		-	567	-		DROUA, $V_{KA} = 18.0$ V, $V_A = 0$ V	
		-	7	-		DR400B, DR500B, DR600B, V _{K,x} = 5.5 V, V _A = 0 V	
		-	7	-		DR400B, DR500B, DR600B, V _{K,x} = 12.0 V, V _A = 0 V	
		-	7	-		DR400B, DR500B, DR600B, $V_{K,x} = 18.0 V$, $V_A = 0 V$	
		-	7	-		DR400B, DR500B, V _{K,x} = 24.0 V, V _A = 0 V	
		-	7	-		DR400B, DR500B, V_{Kx} = 36.0 V, V_A = 0 V	
		-	8	-	1.1	DR600B, V _{K,x} = 24.0 V, V _A = 0 V	
		-	17	-	1	DR600B. $V_{K_{Y}} = 36.0 \text{ V}$. $V_{A} = 0 \text{ V}$	
Vie	Ignition Alternator Excitation Trigger On Voltage ⁽¹⁰⁾		2 01	-			
*IGN,ON	Institute Alternation Excitation Trigger On Voltage	<u> </u>	1.00		V		11
VIGN,OFF	Ignition Alternator Excitation Trigger Off Voltage	-	1.98	-			11
V _{IGN,HYS}	Ignition Alternator Excitation Trigger Hysteresis Voltage ⁽¹²⁾	-	30	-	mV		
V _{STARTER,TRIP}	Starter Alternator Excitation Trigger Trip Voltage ⁽¹³⁾	-	2.02	-	v		12
V _{STARTER,GO}	Starter Alternator Excitation Trigger Go Voltage ⁽¹³⁾	-	1.99	-	Ľ		12
		-	26	-		V _{IGN} = 5.0 V	
		-	60	-	1	V _{IGN} = 12.0 V	
LIGN	Ignition Alternator Excitation Trigger Current	-	111	-	1	V _{IGN} = 18.0 V	13
- Cont			171	_		V _{ICN} = 24.0 V	
			200	_		V _{er} = 36.0 V	
		1	51		μA		
		<u> </u>	51			*STARTER = 3.0 V	
			120	-		VSTARTER - 12.0 V	
ISTARTER	Starter Alternator Excitation Trigger Current	-	222	-		V _{STARTER} = 18.0 V	14
		-	341	-		V _{STARTER} = 24.0 V	
		-	579	-		V _{STARTER} = 36.0 V	
t _{ALTEXC, DELAY}	Alternator Excitation Delay Time ⁽¹⁴⁾	-	4	-	S		
tal TEXC DUILSEON	Alternator Excitation Pulse On Time ⁽¹⁴⁾	-	0.5	-	s		
t	Alternator Excitation Pulse Off Time ⁽¹⁴⁾		3	_			
ALTEXC, PULSEOFF	Combine Trigger Current		22		5	COMPLIEL and COMPLIEL charted together	45
COMBINE		-	33	-	μA	CONIDINE + and CONIDINE - Shorted together	15
V _{COMBINE+}	COMBINE+ Floating Voltage	-	3.3		V		-
tee	Rectifier Reverse Recovery Time ⁽¹⁵⁾	-	-	340	us	Model DRxxxA, I _F = I _{SURGE,MAX}	
-0.0		-	-	590		Model DRxxxB, I _F = I _{SURGE,MAX}	
+	MOCEET Chart up Time (16)	-	140	-		V _A = 0 to 12 V, Cathodes floating	
MOSFET, START	NOSET Start-up Time	-	1.5	_	ins	$V_{yy} = 14$ V to floating, $V_A = 12$ V	

See Notes on next page...

Notes:

- 1. Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. Exposure to any absolute maximum rating condition for extended periods may affect device reliability and lifetime.
- Larger negative voltages will blow internal fuse. If fuse blows, as long as V_A is not more negative than -21/-39 V for model DRxxxA/DRxxxB, respectively, and is less than V_K, no damage to device will occur. Only use manufacturer-specified fuse for replacement.
- 3. Transient-protected to 40 V. Additional external protection may be required in some applications.
- 4. Transient-protected to 60 V. Additional external protection may be required in some applications.
- 5. Using the rectifier with the device ground disconnected is not recommended. Exceeding any of these ratings will cause excessive heat buildup, leading to MOSFET failure.
- 6. Transient-protected to -60 V. Additional external protection may be required in some applications.
- 7. Loop inductances are defined as the external system inductances seen between the common anode and each of the cathodes, as well as between the common anode and rectifier ground. See Figures 1-6 and application sheet for further information.
- 8. Voltage drop tested under pulsed conditions with pulse length ≤ 2 s.
- 9. I_s sourced from cathode (anode), when $V_A < V_K (V_A > V_K)$.
- 10. Ignition alternator excitation trigger on voltage defined as the ignition line voltage at which the alternator excitation process begins. Voltage must stay above this value during entire excitation process.
- 11. Ignition alternator excitation trigger off voltage defined as the ignition line voltage at which the alternator excitation process is terminated and reset; voltage must rise above the ignition alternator trigger on voltage to restart the alternator excitation process.
- 12. Ignition alternator excitation trigger hysteresis is defined as V_{IGN.OFF}.
- 13. Starter alternator excitation trigger trip voltage is defined as the rising starter line voltage at which the device detects a start event. Starter alternator excitation trigger go voltage is defined as the falling starter line voltage at which the alternator excitation process begins (after the voltage has first risen above V_{STARTER,TRIP}). If at any time during the alternator excitation process the starter line voltage rises above V_{STARTER,TRIP}, the alternator excitation process will be terminated and the device will wait for the voltage to fall below V_{STARTER,TRIP} before initiating a new alternator excitation process.
- 14. See application sheet for more information on the alternator excitation process.
- 15. Reverse recovery time measured from the time the anode-to-cathode voltage goes negative until the MOSFET array turns completely off. Reverse current may continue to flow through the MOSFET transient voltage supression diodes or the inductive load diode depending on the inductance in the system.
- 16. MOSFET start-up time is defined as the time from when $V_A V_k$ becomes positive to when the MOSFETs enter their low-resistance state.

Figure 1: Maximum Reverse Turn-Off Current vs. Temperature and Loop Inductance (DR400A)

Figure 3: Maximum Reverse Turn-Off Current vs. Temperature and Loop Inductance (DR600A)

Figure 5: Maximum Reverse Turn-Off Current vs. Temperature and Loop Inductance (DR500B)

Figure 2: Maximum Reverse Turn-Off Current vs. Temperature and Loop Inductance (DR500A)

Figure 4: Maximum Reverse Turn-Off Current vs. Temperature and Loop Inductance (DR400B)

Figure 6: Maximum Reverse Turn-Off Current vs. Temperature and Loop Inductance (DR600B)

Page 5 of 9 REV 0

Figure 7: Operating Current $(V_{\kappa} > V_{A})$

Figure 9: Operating Current (Combine Mode Active)

Figure 11: Ignition Alternator Excitation Voltage

Figure 15: Combine trigger current

Figure 8: Operating Current ($V_A > V_K$)

Figure 10: Reverse Leakage Current

Figure 12: Starter Alternator Excitation Voltage

Perfect Switch, LLC (858) 720-1339

© 2023 Perfect Switch, LLC.

Specification Sheet-Dual Rectifier, LRG GEN4.1 REV O.ai 09/23 **WWW.perfectswitch.com**

Electronic assembly inserted into hi-temperature polycarbonate enclosure and fully encapsulated with silicone elastomer specifically developed for potting electronic modules.

Four intgrated mounting points for user supplied 5/16" mounting hardware of suitable length.

Brass mounting posts, 7/16-14 x .75" with provided brass washers and nylon insert nuts. Mounting torque not to exceed 15 newton-meters.

Molex top-mounted control harness and expansion port for remote monitoring display.

Typical weight post encapsulation including provided hardware is 54 ounces (+ /- 10%)

Diagram 1

POWER-GATE Dual Rectifier allows all batteries in the network to be charged. In the diagram below, the alternator (or alternate charging source like DC shore power, solar array, or DC battery charger) is applying charging current to the anode (input) post of the rectifier. Current passes through two independent MOSFET arrays to Main Battery cathode and Auxiliary Battery cathode. Loads applied to the Auxiliary Battery are isolated from the Main Battery just as Main Battery loads are isolated from Auxiliary Battery.

The Violet alternator excitation circuit ensures that internally regulated alternators are energized by the downstream battery during the engine cranking process, a necessity when placing an isolator between the alternator and the batteries.

The Battery Combine feature causes bi-directional current flow between the two batteries when the two "combine" wires are joined together. Should the Main Battery be discharged to a low, no-start condition, the Auxiliary Battery can be "jumped" to the Main Battery. The use of a momentary switch is recommended to ensure the battery combine feature is disabled by default.

REVISION HISTORY

© 2023 Perfect Switch, LLC.

REV	DATE	DESCRIPTION	PAGE NUMBER (S)
0	10/15/15	Original Release	

AZARD OF LECTRIC RIESGO DE DESCARGA RIS DESCARGA HOCK, (PLOSION, ELECTRICA O ELECARICA O ELI ELI DISCONNCARARC FLASH. Disconnect all power before installing or working with this equipment. • Desconectar todos los suministros de energia a este de trabajar con este equipo. • I Verify all connections and replace all power. • Verificar todas las conexiones de energizer el equipo. • I illure to follow ese serious injury. EI incumplimiento de estas De sincumplimiento de estas De sincumplimiento de estas De sincumplimiento de stras Sult in death serious injury. EI incumplimiento lesiones serias. De sincumplimiento de estas De sincumplimiento de stras	RISQUE DE GEFAHR EINES DESCHARGE REKTRISCHE DESCHARGE N SCHLAGES DU EXPLOSION ODER EINER Eteindre toutes les sources jeglichen d'énergie de Strom ab, der cet appareil avant de avant de versorgt, bevor travailler Gerät Arbeiten dessus de cet Gerät Arbeiten appareil Vor der Inbetriebnahme alle Anschlüsse couverts en alle Gehäuseteile olace avant de Unterlassung dieser Anweisungen köinnen zum Tode oder zu schweren Verletzungen	RISCHIO DI SCOSSA ELETTRICA O DELL'ESPLOSI ONE. • Spenga tutta l'alimentazion e che fornisce questa apparecchiatu ra prima del lavorare a questa apparecchiatu ra • Verificare tutti i collegamenti e sostituire tutte le coperture prima della rotazione sull'alimentazi one L'omissione di seguire queste istruz ioni provocherà la morte o di lesioni serie	RISCO DE DESCARGA ELÉTTRICA OU EXPLOSÃO • Desconectar o equipamento de toda á energia antes de instalar ou trabalhar com este equipament to • Verificar todas as conexões e recolocar todas as tampas antes de religar o equipamento O não cumprimento destas instruções pode levar á morte ou lesões sérias.
--	---	---	--

Perfect Switch, LLC (858) 720-1339

Specification Sheet-Dual Rectifier, LRG GEN4.1 REV O.ai 09/23 WWW.perfectswitch.com